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A recently developed model for the dynamics of monodisperse polymer melts of 
linear chains is briefly reviewed. Within the simplifications inherent in the model, it is 
found that the obstacles to the motion of a given chain, which are imposed by neighboring 
chains, do not suppress the lateral chain motion. The model associates a length scale 
with each obstacle, and compares it with the length scale for chain motion. If the 
obstacle length is greater than the length scale for chain motion, the obstacle is deemed 
impassable. The cooperative motion of the mutually impassable obstacles is considered, 
and this gives rise to predictions that are in excellent agreement with experimental 
observations. If the model were modified to include the additional complexities of real 
polymer systems, various features of the model might change. The implications of a 
number of possible modifications in the model are explored. Specifically, the impact 
of varying the behavior of the function which determines the fraction of obstacles that 
are impassable is examined in detail. In addition, in the original model it is assumed 
that chain memory is relaxed due to the slowing of lateral chain motion by the obstacles 
imposed by neighboring chains. The effect of the opposite assumption of essentially no 
memory relaxation is also studied. Finally, the influence of limiting the extent of the 
correlations between the motions of various chain segments because of f'mite chain 
length is also considered. It is found that these features have effects that can largely 
cancel each other. As a result, a range of lateral motion models, which axe consistent 
with the known phenomenology of these systems, are possible. 

1. Introduction 

In this work, we discuss a model for the dynamics of a monodisperse polymer 
melt. For simplicity, we consider only the case of linear polymer chains. The 
dominant model for melt polymer dynamics over the past 10-15 years has been the 
reptation model [1-22],  although a number of alternative models have appeared 
recently [23-31 ]. The reptation model assumes that the lateral motion of each chain 
is so hindered by the surrounding chains that it is essentially suppressed for distances 
longer than some value. If this is the case, then the chain motion on longer length 
scales must occur by motion of the chain along its own backbone. The reptation 
model has been quite successful in describing a great many observations concerning 
the dynamics of relaxation of polymer melts [32-42]. Despite this general success, 
there are reasons to examine the basic premise of the reptation model more closely, 
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and to consider if other models are also reasonable. First of all, reptation hypothesis 
has never been proven on the basis of  a more fundamental description of  the 
polymer system. Its justification rests on its ability to describe phenomenology. 
This does not preclude the possibility of altemative models which also describe 
phenomenology. These are some experimental observations for which is it ambiguous 
whether the reptation model provides an adequate description. For example, the 
terminal relaxation time is found experimentally to scale as N 3"4, where N is the 
number of  monomer units per chain. The reptation model predicts an N 3"° behavior. 
Various explanations for this discrepancy have been advanced [9,43,44] and it is 
not clear whether this observation represents a real deviation from the reptation 
prediction or not. 

We have recently developed alternative models [27-32] which do not assume 
that the lateral chain motion is suppressed, and which therefore probe the consequences 
of  lateral chain motion. We have found that it is possible for lateral motion models 
to reproduce the phenomenology of  these systems [27-30].  In this paper, we briefly 
describe a model [31] which considers the lateral chain motion without making an 
assumption about whether it is suppressed by the surrounding chains. It treats the 
surrounding chains as barriers, and associates a length scale with each barrier. If 
the length scale for a barrier is less than the mean chain displacement, then the 
barrier does not block the lateral motion, otherwise is does block the lateral motion. 
Since the mean chain displacement is a function of  time, so is the fraction of  
obstacles that are effective barriers to the lateral chain motion. There are effective 
barriers on all length scales less than the chain radius of  gyration. This impedes the 
relative motion of the chains. However, there are still cooperative motions, and we 
analyze these cooperative motions by means of  a scaling argument. This analysis 
predicts that the cooperative motions result in lateral motion on all length scales, 
within the assumptions of  the model. The mean squared monomer  displacement is 
found to scale as g(t) - t 2/7, and the terminal time scales as N 7/2. The center of  mass 
diffusion constant is predicted to scale as N -2"1, when cooperative motions are 
included. These predictions are in very good agreement with experimental results 
and computer simulations. 

While this model contains many features which should be important in real 
polymer systems, it still provides a quite simplified picture of the polymer dynamics. 
In particular, the model treats each obstacle as separate from all other obstacles. 
Within the context of this simplification, it predicts that the lateral motion is not 
completely suppressed due to the cooperative motions in the melt, and demonstrates 
that a model based on lateral chain motion can reproduce experimentally observed 
behavior. In real systems, many of  the local obstacles encountered by a chain are 
actually different segments of the same neighboring chain. Furthermore, all the 
neighboring chains surrounding a designated probe chain are highly entangled with 
each other as well as with the probe chain. This intertwining of  the various obstacles 
to the motion of the probe chain must be accounted for in order to definitely address 
the question of  whether the lateral motion is suppressed or not in the melt. 
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A realistic theory of these systems including this level of complexity has not 
yet been developed. In this paper, we explore the range of  behaviors of  our current 
lateral model as various features of the model are modified. This work provides an 
understanding of  the sensitivity of the model to the various features considered. As 
additional levels of  complexity are added to these models in the future, this study 
should aid in determining whether the new models can provide predictions in 
agreement with experiment. 

In section 2.1 of this paper, the lateral motion model is briefly reviewed. 
Section 2.2 explores the sensitivity of  the model to changes in three features. The 
first feature (section 2.2.1) involves modifications in the form of the function which 
determined the fraction of  obstacles that are impassable as a function of length 
scale. The second feature (section 2.2.2) concerns the treatment of chain memory. 
In the original model, it is assumed that chain memory is essentially relaxed on the 
time scale for lateral motion. This assumption is based on the fact that the lateral 
motion is significantly slowed by the obstacles imposed by neighboring chains, 
allowing time for the memory relaxation. The effect of  the converse assumption of  
no memory relaxation is discussed. The third feature explored (section 2.2.3) involves 
the impact on the model predictions if the length scale for correlations between 
motions of  different chain segments is limited to the chain radius of gyration. In 
the original model, the correlation lengths are longer than this at later times. We 
find that these different modifications of the model result in changes in the predictions 
of the model that largely cancel. As a result, a range of lateral models are qualitatively 
consistent with the phenomenology of  polymer systems. 

2. Theory 

2.1. DESCRIlrlTON OF THE MODEL FOR LATERAL CHAIN MOTION 

In a monodisperse melt, each chain is entangled with on the order of  N 1/2 
other chains, where N is the number of monomer units per chain. Each pair of  
entangled chains has on the order of  N 1/2 interchain contacts on average. In the 
course of these many interchain contacts, a pair of  chains wind randomly around 
each other. Figure 1 presents a schematic picture of this. Because two chains are 
highly interwined, they cannot readily separate. The relative motion of the two 
chains can occur by means of  reptation, in which each chain moves along its own 
backbone. Alternatively, each chain could move laterally along the backbone of  its 
neighboring chains. A mixture of  the two types of motions is also a possibility. 

The model discussed here considers the lateral motion of  each chain along 
the contours of  its neighbors. As a chain moves along these neighboring contours, 
it encounters additional chains which pose obstacles to the lateral motion of  the 
chain of  interest. Some obstacles are effective barriers only over short length scales 
and can be easily circumvented by chain motion on longer length scales. This is 
described in fig. 2. In the model discussed here, a contour length l is associated with 
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Fig. 1. Schematic drawing of two entangled chains in a melt. 
In a real melt, both chains have Gaussian random coil 
configurations. Chains are randomly wound around each other. 
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Fig. 2. The lateral motion of chain A along the contour of chain B is 
impeded by contact with chain C. On the length scale shown in (a), chain 
C poses an impassable barrier to the motion of A. The same set of chains 
is shown in (b) on a much larger length scale. On this length scale, 
the motion of A can result in it passing over the obstacle, chain C. 

each obstacle. An obstacle of  length 1 constitutes an impassable barrier to the lateral 
motion of  a chain if the length scale for chain motion is less than I. On the other 
hand, it does not pose an impassable barrier when chain motion on longer length 
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scales is considered. As time increases, the length scale of chain motion increases, 
and the fraction of obstacles which form impassable barriers decreases. 

If a barrier is impassable on some length scale, this represents a barrier only 
to the relative motion of  the chains, not to the cooperative chain motion. This 
cooperative motion of the chains leads to chain displacements over longer distances. 
On these longer length scales, the effective cooperative motion involves a greater 
number of chains. This slows the lateral chain dynamics. As the chain motion 
occurs over longer length scales, a larger fraction of the barriers becomes passable. 
This feature facilitates the lateral motion. 

These are the main features of the model. Notice that while the model explores 
the lateral chain motion, it does not assume that the lateral motion must occur. In 
fact, neighboring chains pose impassable barriers to the lateral motion on any 
length scale of  chain motion shorter than the chain radius of  gyration. If it were not 
for the cooperative motion of the chains, the lateral motion would be entirely 
suppressed. 

A contour length is associated with each barrier to the motion of  one chain 
(chain A) along the contour of a second chain (chain B). (The chain labels refer to 
fig. 2.) The contour length employed in the model is the contour length of 
the barrier chain, chain C, between successive contacts with chains B. The 
distribution of contour lengths for the barriers pN(l) can be evaluated by 
assuming that p~t is normalized and that it gives an average l which is of 
order N 1/2. This latter condition is equivalent to requiring that there be order 
N 1/2 contacts between a pair of chains on average. These conditions are consistent 
with the distribution [31] 

1 al-3/2 pN(I) = ~ /(1 - aN-l/Z), (1) 

where a is a constant, and the segment length b has been set to unity. 0 
Since we model each chain in the melt as moving along the contours of the 

nearby chains, then the mean squared contour displacement (/2) can be calculated 
at each time for the motion of one chain along another at a contact point. If the 
contour length associated with a given barrier is greater than i(t) = (/2)1/2, then the 
lateral motion of a chain is not sufficient to move it past this barrier. In this case, 
the barrier is considered impassable, and the other chain cannot proceed it along 
a contour. Conversely, if the barrier contour length is less than i(t), then the barrier 
is considered passable, and any other chain can move past it. The fraction of  
barriers which are impassable at any time is given by the integral of pN(l) from [(t) 
to N. This fraction has the form 

1) Since the segment length b has been set to unity, the contour lengths such as l, /(t), s are actually 
dimensionless contour lengths l/b, lib and s/b, respectively. Essentially, the unimportant factor of b 
has been dropped to simplify the equations. 
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F( i )  - i -1/2. (2) 

We model this as a set of Brownian walkers on a contour. The walkers 
represent segments of various chains as they progress along the contour of a specific 
chain. Randomly chosen walkers are removed as time progresses, so that the fraction 
of walkers remaining on the contour at any time is given by F[[(t)]. The walkers 
that remain at any given time represent the impassable barriers at the time. The 
average distance between walkers at time t is given by s = F(l)  -1. The walkers that 
have been removed up to time t represent barriers which are passable at t, but were 
impassable at some earlier time. Since these restrict the chain motion along the 
contour on shorter length scales, they slow the diffusive motion at t, even though 
they are passable. This can be accounted for by evaluating the diffusion constant 
for motion on the interwalker length scale s. The appropriate diffusion constant is 
given by 

as - s 3/z / ts ,  (3) 

where ts is the time when the mean-squared displacement of the walkers is s 2. The 
justification for this form for d, is presented elsewhere [31], and it is discussed 
when considering a generalization of the model in section 2.2.1. 

We have applied a scaling analysis to this model [31]. It predicts that the 
mean-squared contour displacement of the walkers behaves as t 4/7. While the models 
treat the chains as moving along contours of  neighboring chains, it is the three- 
dimensional motion of  the chains which we ultimately need to consider. The contours 
of chains in a melt are well approximated by Gaussian random coils [45,46]. This 
can be used to deomonstrate that g(t) ,  the mean-squared (three-dimensional) 
displacement of a point on a chain, is related in this model to [(t) by [31] 

g(t) - [(t). (4) 

Since ~2 _ t417, the scaling analysis of the model predicts 

g(t)  - t 2/7. (5) 

At sufficiently long times, the center of mass component dominates and this t 2/7 
behavior cross over to a g ~ t simple diffusion form. 

Another important quantity in polymer dynamics is the terminal relaxation 
time, which defines the longest time scale for linear viscoelastic response. In this 
model, and in essentially all other models for polymer melts, the scaling of  this 
quantity is obtained by equating it with the time when l(t) is on the order of  the 
chain contour length. This is equivalent to the time for which g(t)  is on the order 
of  the squared chain radius of  gyration R 2. If g(t) ~ t a, then the terminal time tf 
must scale as N r, where ~= 1/a.Therefore,  the scaling analysis predicts tf ~ N 712. 
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Another important quantity is the diffusion constant for the chain center of  
mass motion. We have considered contributions to this diffusion constant from the 
relative motion of  neighboring chains and from the correlated motion of  all chains 
in a region of  the melt [31]. We find that the contribution due to the correlated 
motion should dominate for large N. A similar observation has also been made by 
Fixman [47]. I f  the centers o f  mass of  two chains are located within a chain radius 
of  gyration of  each other, then the two chains are entangled. In time tf, the mean- 
squared relative displacement of  the two chains is on the order of  R 2. This is 
essentially the definition of  tf. If  two chains have centers of  mass located a distance 

> Rc apart, and if  the motion of  the chains is correlated over distances of  order 
~, then the maximum mean-squared relative displacement of  these two chains is 
on the order of  ~2. This requires correlated motion of all chains in a volume of  order 
~3, and the diffusion constant for the correlated motion of  all chains in the volume 
D~ should be inversely proportional to the number of  monomers in the volume 2) 
This gives D~ ~ ~-3. The mean-squared displacement in time tf due to correlated 
motion over a distance ~ is given by the smaller of  ~2 and 6D~tf.  The ~ which 
maximizes this is obtained from 

~2= 6D~tf. (6) 

The dependence of  ~ on N can be obtained by substituting tf ~ N 712 and D~ ~ ~-3 
into (6). Substitution of  this result back into D~ yields a contribution to the chain 
center of  mass diffusion constant which scales as [31] 

De.m" N N -2"1. (7) 

This model incorporates a number of  significant features. While it investigates 
the lateral chain motion, it does not assume that the lateral motion must occur. The 
cooperative motion of  the chains makes the lateral motion possible, even though 
nearby chains present impassable barriers to the lateral chain motion on all length 

2) A collective mode of this type will be similar to the center of mass mode for the n monomers within 
the correlated volume. This mode can be written as y = N -1 ~,iCiXi, where x i are the individual monomer 
coordinates. For the center of mass, all the cj's are unity. In the present case, the cj's may vary some 
over the correlated volume, but are of order unity. For a very short time step "t', the motions of the 

• • 2 - 2  different monomers m the volume are nearly independent. Therefore, ( y )  = N ~,it (c;x,ckx~) 
- 2  2 2 -1  2 2 2 2 2 - 1  2 . " '  ;' • " = N Y~jc j (x j )= N (c)or , where o" = (xj)and ( c )  = N Y.jcj .  Since all thecjs are of 

order unity, (c 2) is also of order unity. The diffusion constant for the collective mode is defined 
by (y2)/21r, and is of order 1IN. Short-range correlations could be included, but these do not affect 
the scaling and become insignificant as "r ~ 0. At longer times, the interactions between the chains 
may or may not slow the collective motion. Since the collective mode involves correlated motion over 
the distance ~2 a mean-square displacement greater than ~2 is not possible in time tf [31]. Therefore, 
if 6Dctf is greater than ~2 the intrachain interactions must slow the motion. For this reason, the mode 
which provides the maximum displacement occurs when eq. (6) is satisfied. 
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scales. The length scale dependence of the fraction of neighboring chains which 
present impassable barriers is also an important feature. Without this, the lateral 
motion would be slower and the terminal time longer. This model predicts a terminal 
time that scales as N 3"5, compared with N 3'° for pure reptation. This means that the 
terminal time for reptation must be shorter for longer chains. However, this does 
not require that reptation must dominate, since there are many more avenues for 
lateral motion. 

2.2. GENERALIZATIONS OF THE MODEL 

This model presents a simplified picture of polymer dynamics. Probably the 
most significant simplification is that the model treats each neighboring chain 
segment as being independent of all others. In the real system, a large number of 
the chain segments in contact with a specific probe chain belong to the same 
entangling chain. Furthermore, the various chains entangling the probe are also 
entangled with each other. More complex models need to be developed and studied 
in order to understand the impact of these features on the lateral chain motion. 
While we do not attempt a complete study of these questions here, we do explore 
the range of behaviors possible within the current model. The first feature considered 
here is the changes in the predictions of the model as the function F(l) is varied. 
This function is the fraction of neighboring chain segments which pose impassable 
barriers as a function of length scale. The form of this function is one feature of 
the model that could change if the additional complexities in the nature of the 
barriers are accounted for. We limit F(l) to the simple scaling functional form 
F(l) ~ l -a, where a is treated as a parameter of the model. The value a = 1/2 corresponds 
to the model discussed above and elsewhere [31]. 

Another feature explored in this section concerns the use of simple random 
walkers to model the motion of the chain segments along the contours of neighboring 
chains. The motion of real chain segments would have some memory of the history 
of their motion. If a point on a chain moves in one direction, then on average the 
remainder of the chain exerts a pull in the opposite direction. The present model 
ignores these memory effects. This corresponds to the assumption that the lateral 
chain dynamics is sufficiently slowed by the barriers to lateral motion that the 
memory function is essentially completely relaxed. Here, we employ a Rouse model 
with a bead friction coefficient evaluated from our lateral motion model to investigate 
the influence of chain memory. 

Another feature of the model is also considered. In the original model described 
above, the correlation length for walker motion on the length scale f scales as f3/2. 
If f > N 2/3, this correlation length is longer than the chain contour length. The 
question arises as to whether this is reasonable. In a real system, a chain moves 
along one chain until it encounters another which blocks its progress. Then it moves 
along that one and so on. This motion along a sequence of chain contours is not 
significantly different in nature than the simplified motion along a single contour 
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employed in the model. However, in this picture of  sequence of contours, it is not 
clear whether there should be a limit on the range of correlations for the motions 
along the contours. In this section, we investigate the effect of limiting the maximum 
correlation length to the chain contour length in the model. 

2.2.1. Varying F(t)  

Here we consider the generalized model which is the same as described 
above except that the fraction of obstacles (segments of neighboring chains) which 
are impassable when considering chain motion on a length scale l is given by 

F(I)= 1 l< lo ;  

= (l/lo) -a l > lo. 
(8) 

The parameter lo is a minimum length for the obstacles, which we set to unity. The 
exponent a is treated as a variable parameter. As before, a model for the motion 
of random walkers on a contour is studied. The walkers pass through each other. 
The quantity i(t) = <12) 1/2 is the root-squared displacement of the walkers along the 
contour. Walkers are removed from the simulation such that the fraction of the 
original number of  walkers present at any time is given by F(1). The remaining 
walkers correspond to the fraction of obstacles which are impassable at that time. 
The obstacles which are passable still slow the lateral chain motion, since they were 
impassable on shorter length scales and thus hindered the motion. This is accounted 
for by defining a length scale dependent diffusion constant analogous to ds of (3) 
for the diffusive motion of the walkers between encounters with other remaining 
walkers. A specific definition of d, is given below. However, we first consider the 
simpler model in which the individual walker diffusion constant is unity at all 
times. The time t in the model with a time-depenent walker diffusion constant can 
be related to the time "t" in the simpler model with a diffusion constant of  unity by 
the relationship 

ds dt  = d'r (9) 

for each short interval. Equation (9) specifies that the change in ~2 be the same in 
the two models during the interval. Integrating this expression gives "r as a function 
of t. 

To solve for the dependence of f on ~', we apply the following scaling argument. 
For a given value of f,  the mean distance between adjacent walkers is s = F(i)  -1 = ~-a, 
and the mean distance between two walkers, which are n walkers apart along the 
contour, is ns. If we assume that the walkers are distributed randomly along the 
contour at all times, then the mean-squared fluctuation in the distance between 
adjacent walkers is s 2, and the corresponding quantity for a pair of  walkers n 
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2 = n 8 2 "  walkers apart is or,, If  the mean-squared displacement  of  the walkers ~2 is 
greater than tr 2 , then the displacement of  the pair of  walkers cannot be independent;  
they must  be correlated. On the other hand, if [2 is less than t7 2, then the mot ion  
of  the pair of  walkers could be independent, since it falls within the squared fluctuation 
in the distance between the walkers. Therefore, the min imum number  of  walkers 
whose motion must  be correlated for displacements on the length scale [ is 

m([) - - [ 2 / $ 2  ~ -[(2-2a). (10) 

2 _<-[2. This quantity m(-[) is the number  of walkers for which cr n The correlation 
length for walker mot ion on length scale -[ must  than be the mean distance between 
walkers m(-[) walkers apart, 

~(-[) - m ( [ ) s ( - [ )  - /(2-a). (11) 

The diffusion constant for the correlated mot ion of  m walkers is the diffusion 
constant for the center of  mass of  these walkers. This is inversely proportional to 
m,  

D(-[) 1 -[2(a-D. (12) 
m 

The "r corresponding to a specific value of -[ can be obtained from 

-[2 -- D(/)'r, (13) 

which gives 

"t" ~ -[(4-2a). (14) 

Inverting this expression, we find 

-[ -- ~1/(4-2a). (15) 

Now we return to the evaluation of  ds, the diffusion constant for the mot ion  
of  a walker  between collisions with other remaining walkers. The effective diffusion 
constant  for walker mot ion  on the length scale -[ can be evaluated as 

do([) - -[Ell. (16) 

If  we assume that t and -[ are related by the simple scaling form 

[ - t ~, (17) 

then (16) together  with (17) yields 
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do([ )  _ / ( 2 - u a ) .  (18) 

The corresponding diffusion constant for motion on the length scale of  the mean 
distance between walkers s, is 

do(s )  ~ i (2a-a[° t ) ,  (19) 

where s = [a has been employed. The correlation length for motion on the length 
scale s is obtained from (11), 

~(s) - s (2-~) - / (2~-~2). (20) 

As long as a < 1 and s > 1, this correlation length is greater than s. Consequently, 
do(s)  includes the effect of some walkers that have not been removed. The number 
of remaining walkers within the correlation length is 

n s = ~ ( s ) / s  - [ (a -a2) .  (21) 

The diffusion constant do(s) can be written as 

1 
d o ( s ) -  - -  ds. (22) 

ns 

Writing do(s )  in the form (22) corresponds to breaking the total set of walkers 
within ~(s) into ns groups. The quantity ds is the diffusion constant for the center 
of mass of  one group, while do(s )  is the diffusion constant for the center of mass 
for the entire set of n, groups. The diffusion constant d, is the diffusion constant 
for a single remaining walker together with the surrounding removed walkers on 
the length scale s. Here we are treating the removed walkers as phantom walkers 
in the model. This is the diffusion constant we use for the motion of a remaining 
walker between contacts with other remaining walkers. 

Equation (22) can be solved for ds to give 

d s ~ nsdo(s)  - 1 (3a-az-a lOt)  - / (3aa-cra2-a) .  (23) 

Equation (9) together with (23) yields 

~- ~ t ( 3 a a - a a 2 - a + l ) .  (24) 

Substitution of  this result into (15) gives 

[ ~ t (3aa-aa2-a+l)l(4-2a). (25) 

Comparison with (17) shows that the exponent on t in this last expression must 
equal a. Solving for a yields the scaling result for / ( t ) ,  
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[(t) - t 1/(4-a). (26) 

For the case where a = 1/2, which is the model presented previously [31], this 
gives [ - t 2/7. If  a = 0 and the all barriers remain impassable, then l behaves as 
t l/4. 

The terminal time tf is associated with the time when l- - N. This corresponds 
to a scaling of  

tf - N (a-a). (27) 

As a varies from 0 to 1, this expression for tf decreases from 4.0 to 3.0. 3) We have 
previously shown [31] that if  t f -  N r, then the contribution to the center of  mass 
diffusion constant from cooperative motions scales as N -3y/5. Therefore, for this 
generalized model, we find 

Dc.m. - N -3(4-a)/5, (28) 

which varies from N -2'4 to N -I"8 as a varies from 0 to 1. 

2.2.2. Chain memory effects 

The second feature of the model which we examine is the effect of  chain 
memory on the motion along the contour. The model described in section 2.1 treats 
the motion of each walker as diffusive and, therefore, ignores these memory effects. 
One way of  rationalizing this approximation is to view each chain as moving by 
lateral steps along the contours of  neighboring chains. The chains also move along 
their own backbones by steps of  approximately the same size. If  a chain takes a 
specific lateral step, then on average this causes the chain to stretch somewhat. If  
this stretching is relieved by other reptative or lateral motions prior to the next 
lateral move of  this point on the chain, then there is no memory and a lateral step 
in either direction along the contour of  the neighboring chain is equally likely. If  
the stretching is not relieved before the next lateral move of  this point on the chain, 
then a move back to the original position is more likely than a move farther in the 
same direction. If  the time steps for lateral and reptation motions are the same, then 
the memory is not significantly relaxed on the scale of  a single step and this slows 
the lateral motion. 

3)Throughout this paper, t r refers to the terminal time for lateral motion. The reptation model predicts 
a terminal time which scales as N 3"°. It might at first seem that the "faster" reptation must dominate 
for large enough N. The assumption here is that there are so many more avenues for lateral motion 
than for reptation that the chain spends its time exploring the lateral motions. If this is the case, then 
the lateral motion model may provide a more reasonable description of the chain dynamics than tube 
models. 
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The presence of barriers to lateral motion slows the mean lateral displacement 
on length scales longer than the mean distance between barriers. However, it does 
not affect the reptation motion. For motion on some contour length scale [,  the 
reptation time for chain relaxation scales as i 2 , since the reptation motion is Rouse- 
like motion along the chain backbone [1]. The time scale for lateral motion, if 
memory effects are ignored, scales as [7/2 for the model described in section 2.1, 
and it scales as i(4-a~ for the generalized version in section 2.2.1. Memory effects 
can only lengthen the times for lateral motion. Therefore, the lateral displacements 
do not have to be very large before the reptation relaxation time is much smaller 
than the lateral displacement time. Under these conditions, the reptation motion 
should relax the chain memory except on quite short length scales. 

The fact that reptation motion is more rapid than lateral motion on most 
length scales does not imply that reptation dominates the dynamics. If lateral motion 
is not totally suppressed by the obstacles posed by neighboring chains, then there 
are many more lateral pathways available to a chain than there are reptation pathways. 
The reptation motion facilitates the lateral motion by relaxing the chain memory, 
allowing the chain to move laterally in different directions at different points along 
the chain. Questions still remain as to whether the reptation motion is able to 
simultaneously facilitate the lateral motion at all points along a chain on all length 
scales. Alternatively, the reptation motion may be so fast that it actually dominates 
the chain motion on some length scales. These are questions we plan to study in 
future work. 

Since it is uncertain whether local reptative motions are sufficient to 
simultaneously relax the chain memory at all points along a chain, it is useful to 
consider the possible effect of chain memory on the current model by studying the 
extreme case in which there is no memory relaxation. We can estimate the memory 
effects by treating the chain as a Rouse chain [1] and replacing the usual friction 
coefficient with a length scale dependent friction coefficient derived from the behavior 
of the lateral chain motion. The friction coefficient in the Rouse model is the 
friction coefficient for the motion of a chain bead (monomer). It does not include 
the effect of the bond interactions with neighboring beads in the same chain. Since 
the friction coefficient does not include these intrachain interactions, it should be 
calculated in the present case from the lateral chain model without memory effects, 
since the memory effects arise from intrachain interactions. Since g - [ = ([2)1/2, 

d 1 d (•2)0 , (29) 
d---t- go 2[ 0 dt 

where the subscript zero indicates that memory effects are ignored. We can define 
a friction coefficient ~'t for the lateral motion along the contours of neighboring 
chains from 

d (12)o _ KBr/( . (30) 
dt 
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The corresponding friction coefficient for three-dimensional bead motion (3D can  
be defined from 

dg° ~ KBT/(3 n . (31) 
dt 

These can be related using (29), yielding 

(3D - (1io. (32) 

The friction coefficient for lateral motion (l can be identified with KBT/DToT(i ), 
where DTOT([) is the total diffusion constant for walkers on the contour in the 
model presented in section 2.2.1. This is given by DTOT([ ) = D([)d s - i (a-E), where 
(12) and (23) have been employed, and a in (23) has been replaced with 1/(4 - a), 
its value in the absence of memory effects. This expression for DTOT gives (t N [(E-a). 
Inserting this into (32) yields 

~3D -- ~'(3-a). (33) 

The mean-squared displacement of g(t) for a Rouse model (ignoring the 
center of mass contribution) has the form [1] 

g(t) - X - ~  1 -  
P 

exp 

t 

-p2A f dtl/(3D(tl) 
0 

I ,~, f dt 0 exp dtl/~3D(tl) 
P 0 0 

(34) 

where p labels the normal modes of the Rouse chain and A is a constant which 
scales as N -2. The friction coefficient depends on time through its dependence on [. 
For large N, the sum over modes can be approximated as an integral over p. The 
result is 

t to ] -1/2 

g(t) - f dt° ! dtl/~31(tl)j " (35) 

If we take g(t) - -[(t) ~ t a, then (3D ~ t (3-a)°t Substitution of these expressions into 
(35) yields a condition on a,  which can be solved to give a = 1/(5 - a ) .  Therefore, 
this model for the memory effects predicts 
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[ ~ t ll(5-a), (36) 

tf ~ N O-a), (37) 

Dc.m.  - N-3(5-a)l 5. (38) 

Notice that only the friction coefficient for lateral motion has been employed in this 
calculation. Therefore, only relaxation times appropriate for the lateral motion have 
been allowed, and relaxations due to faster motions along the chain backbone have 
been excluded. 

2.2.3. The effect of  restricting the correlation length for  lateral motion 

In this section, we explore the consequence of  restricting the length over 
which correlations are allowed in the model. Since the correlation length for motion 
on the length scale i is given by ~(i) - 7 (2-a), this correlation length becomes larger 
than the contour length of  a chain L - N, when [ - N 1/(2-a). This corresponds to the 
time to ~ N (4-a)/(2-a). If we do not allow correlations over distaces longer than L, 
then the i - t 1/(4-a) behavior crosses over to simple diffusion behavior 2 .2 ~ Dot, 
when t = to. The diffusion constant Do is the total diffusion for lateral motion at to. 
This is given by D(f)d s evaluated at time to. When the result a = 1/(4 - a) is substituted 
into into (23), one obtains d s - i - "  = s -1. A consequence of  this is that the total 
diffusion constant is inversely proportional to the correlation length and that 

1 
D O - - -  (39) 

N 
for t > to. 

We can summarize the behavior of  g(t) ~ i(t) for the model if we limit the 
correlation length to the chain contour length as 

g(t) = t 1/(4-a) t < to; 

( 1 -~1/2 
= ~-~ t ) t > to, (40) 

where t o -  N (4-a)/(2-a). The terminal time is found from g ( t f ) -  N, which gives 

t f - N  s. (41) 

The cooperative contribution to the center of  mass diffusion constant scales as 

Dc.rn" - N -9/5. (42) 

It is worth noting that there is also a non-cooperative contribution to De.re. which 
scales as N -2, as in the reptation model [31]. 
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3. Discussion and summary 

In this paper, we have described a recently presented model for the dynamics 
of monodisperse polymer melts. The model studies the lateral chain motion and 
finds that, within the simplifications inherent in the model, the lateral motion is not 
suppressed by the obstacles presented by neighboring chains, although it is slowed. 
The model predicts behaviors for the monomer mean-squared displacement, the 
terminal relaxation time, and the center of mass diffusion constant which are in 
excellent agreement with experimental results and computer simulations [48-50]. 

The model greatly simplifies the problem by treating each obstacle to lateral 
motion as being independent of all others. In reality, the obstacles are highly interconnected 
and intertwined in a melt. In the model considered here, as chain A moves along the 
contour of chain B, it encounters a barrier chain, chain C. It then moves along the contour 
of chain C. In actual polymer melts, it would soon encounter a chain D, move along the 
contour of that chain, encounter a chain E, and so on until it encountered the contour 
of chain B again. In this model, we consider only simple barriers made up of a single 
chain, chain C. We find the model provides reasonable results despite this simplification. 
One possible explanation is that the barrier presented by the sequences of chains, chain 
C, chain D, chain E, and so on, has the form of a random walk contour, which has short- 
range correlations but looks like a Gaussian random coil over longer distance. Therefore, 
the effect of the complex barrier composed of chains C, D, E . . . .  is not substantially 
different from the simple barrier, chain C, employed in the model. On the other hand, 
it may be that in the real system the complete set of intertwining chain contours results 
in topological constraints that are not present in the simple model presented here. Further 
work is needed to study this point. 

In this paper, we study the sensitivity of the model to changes in various 
aspects of it. We vary the form of  the function F(/), which gives the fraction of  
obstacles that pose effective barriers to lateral motion as a function of length 
scale. This is certainly one feature of the model that could change as added 
complexities are included. We restrict our study to an F(l) of the form l -a, where 
a is considered a variable parameter. The value a = 1/2 corresponds to the original 
model. The scaling analysis applied to this generalized model predicts a mean- 
squared monomer displacement which behaves as g ( t ) ~  t 1/(4-a), a terminal time 
which scales as t f -  N (4-a), and a center of mass diffusion constant which scales as 
Dc.m. ~ N-3(4-a)/5. 

Chain memory effects have been ignored in the original model. This corresponds 
to assuming that these are effectively relaxed by local chain motions on the time 
scale for the hindered lateral motion. We explore the consequences of this assumption 
by making the alternate assumption that memory effects are not relaxed to any 
significant extent. The memory is then incorporated into the model through the use 
of a Rouse model for the chain dynamics, which employs a friction coefficient 
evaluated from the lateral chain motion. When these memory effects are included, 
the model predicts g(t) ~ t ll(5-a), tf N N (5-a) and De.m. - N -3(5-a)15. 
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Finally, we consider the effect of limiting the maximum range of correlations 
betwen the motions of  the chains. In the original model, the relative chain motions 
are correlated over a distance which becomes longer than the chain radius of gyration 
before the terminal relaxation is reached. In it unclear whether this is reasonable. 
Therefore, we explore the behavior of the model if we limit the maximum correlation 
length. We find that g(t)  crosses over from the t 1/C4-a) behavior to a ( t /N)  1/2 behavior 
at a crossover time to ~ N (4-a)l(2-a). The  terminal time behaves as N 3, and the 
cooperative contribution to De.re. scales as N -915. These predictions ignore memory 
effects. 

From these studies, it is clear that a range of lateral models are reasonably 
consistent with the experimentally observed behaviors. If F(1) ~ l -~, then an increase 
in the parameter a facilitates the lateral motion, while decreasing a slows lateral 
motion. Inclusion of chain memory slows lateral chain motion, and limiting the 
maximum correlation length for relative motions of the chains facilitates the lateral 
chain motion. This study provides some insight into the range of possibilities within 
the lateral model for chain motion. For instance, if a more complex and realistic 
model for the distribution of barriers to lateral motion results in a modified F(l) ,  
this could be offset by memory effects or by limiting the range of  correlations. 
Memory effects and limitations on the correlation length shift the behavior of  the 
model in opposite directions and, therefore, could be present but largely cancel in 
some systems. The real challenge for the future is to develop models which incorporate 
the complexities due to the connections between and intertwining of various barriers. 
Since both reptative and lateral motions lead to predictions in general agreement 
with known polymer phenomenology, it is only by means of this type of  detailed 
theory that a truly clear picture of the mechanisms of  polymer dynamics in the melt 
can be obtained. 
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